Collagen plays an active role in the aggregation of beta2-microglobulin under physiopathological conditions of dialysis-related amyloidosis.
نویسندگان
چکیده
Dialysis-related amyloidosis is characterized by the deposition of insoluble fibrils of beta(2)-microglobulin (beta(2)-m) in the musculoskeletal system. Atomic force microscopy inspection of ex vivo amyloid material reveals the presence of bundles of fibrils often associated to collagen fibrils. Aggregation experiments were undertaken in vitro with the aim of reproducing the physiopathological fibrillation process. To this purpose, atomic force microscopy, fluorescence techniques, and NMR were employed. We found that in temperature and pH conditions similar to those occurring in periarticular tissues in the presence of flogistic processes, beta(2)-m fibrillogenesis takes place in the presence of fibrillar collagen, whereas no fibrils are obtained without collagen. Moreover, the morphology of beta(2)-m fibrils obtained in vitro in the presence of collagen is extremely similar to that observed in the ex vivo sample. This result indicates that collagen plays a crucial role in beta(2)-m amyloid deposition under physiopathological conditions and suggests an explanation for the strict specificity of dialysis-related amyloidosis for the tissues of the skeletal system. We hypothesize that positively charged regions along the collagen fiber could play a direct role in beta(2)-m fibrillogenesis. This hypothesis is sustained by aggregation experiments performed by replacing collagen with a poly-L-lysine-coated mica surface. As shown by NMR measurements, no similar process occurs when poly-L-lysine is dissolved in solution with beta(2)-m. Overall, the findings are consistent with the estimates resulting from a simplified collagen model whereby electrostatic effects can lead to high local concentrations of oppositely charged species, such as beta(2)-m, that decay on moving away from the fiber surface.
منابع مشابه
Influence of heparin molecular size on the induction of C-terminal unfolding in β2-microglobulin
Dialysis-related amyloidosis (DRA) is characterized by accumulation of amyloid β2-microglobulin (β2m) in the interstitial matrix. Matrix substances such as heparin have reportedly been strongly implicated in the pathogenesis of dialysis-related amyloidosis. In clinical setting of hemodialysis, two types of heparin, i.e., high and low molecular heparin (H.M.H. and L.M.H.) have been routinely use...
متن کاملbeta2-Microglobulin is potentially neurotoxic, but the blood brain barrier is likely to protect the brain from its toxicity.
BACKGROUND In dialysis-related amyloidosis, beta2-microglobulin accumulates as amyloid fibrils preferentially around bones and tendons provoking osteoarthritis. In addition to the pathologic role played by the amyloid fibrils, it can be speculated that a pathogenic role is also played by the high concentrations of soluble beta2-microglobulin because it is toxic for certain cell lines like HL60 ...
متن کاملLysophospholipids induce the nucleation and extension of beta2-microglobulin-related amyloid fibrils at a neutral pH.
BACKGROUND In beta(2)-microglobulin-related (Abeta2M) amyloidosis, partial unfolding of beta(2)-microglobulin (beta2-m) is believed to be prerequisite to its assembly into Abeta2M amyloid fibrils in vivo. Low concentrations of sodium dodecyl sulfate induce partial unfolding of beta2-m to an amyloidogenic conformer and subsequent amyloid fibril formation in vitro, but the biological molecules th...
متن کاملThe amyloid fibrils of the constant domain of immunoglobulin light chain.
Light chain-associated (AL) amyloidosis is characterized by dominant fibril deposition of the variable domain (VL) of an immunoglobulin light chain, and thus its constant domain (CL) has been considered not to be amyloidogenic. We examined the in vitro fibril formation of the isolated CL in comparison with beta2-microglobulin (beta2-m), an immunoglobulin domain-like amyloidogenic protein respon...
متن کاملbeta(2)-Microglobulin-selective direct hemoperfusion column for the treatment of dialysis-related amyloidosis.
Lixelle is a direct hemoperfusion-type adsorption column that was developed to selectively eliminate beta2-microglobulin (beta2-m) from the circulating blood of patients with dialysis-related amyloidosis (DRA). The adsorbent in Lixelle comprises porous cellulose beads to which hydrophobic hexadecyl alkyl chain is covalently bound. One milliliter of wet Lixelle beads eliminates more than 1 mg of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 281 24 شماره
صفحات -
تاریخ انتشار 2006